

Part One: Principles

Hello World

“There is no elevator to success, you have to take the stairs” ― Zig Ziglar

I started developing software more than ten years ago. Since then, I've built

many applications, created dozens of open source projects, and pushed

thousands of commits. Besides that, I spoke in more than a hundred

conferences, and had the opportunity to chat with a ton of developers along

the way.

I was fortunate enough to be in contact with some of the best software

engineers in the industry, but I also met a lot of programmers who are still

doing the same thing for many years.

What separates one group from the other? What's unique about people who

work in the biggest companies in our industry? What's special about

individuals who create the most used applications in the world? How can some

developers be so prolific at work and also outside their jobs?

These questions stayed on my head for a long time. I realized that I could buy

the best mechanical keyboards, go to the most famous tech conferences in the

world, and learn all the newest frameworks. Still, if I cultivated bad habits, it

would be impossible to become a top developer. Because of that, I decided to

reach out to the best developers I know and ask them tips on how to be more

productive.

This book doesn't o�er a straight path or pre-defined formula for success.

This book is the result of a quest. A quest to uncover what habits can be

cultivated to help become a better software engineer.

Methodology

This is not a traditional book. You won't find the same format or structure that

a regular book has. In fact, this book was designed to be as simple and objective

as possible. You can follow the order of chapters, or you can read them

individually. Everything is standalone and doesn't depend on previous

knowledge.

At the end of each habit, you'll find a section marked as "Questions &

Answers" , where I interview senior developers and tech leads from various

companies to understand how they got there. I went after tech giants such as

Google, Amazon, Microsoft, and Adobe. Powerful startups such as GitHub,

Spotify, Elastic, Segment, GoDaddy, and Shopify. All the way to established

organizations such as Citibank, BlackBerry, and The New York Times.

These people come from all over the world and have a pretty diverse

background. From San Francisco to New York. From São Paulo to Montreal.

From London to Stockholm. The idea is to present you not a one man's point of

view, but a collection of insights on how to navigate your career.

You'll also find sections marked as "TODO" , where I encourage you to reflect

on certain topics and take action with specific directions. I highly recommend

taking a few minutes to dive into them since this will generate even more

knowledge.

And finally, you may find some sections marked as "Bonus" . These are extra

content that I prepared for you. They can be found outside the book and will

complement what you're reading.

Why Habits?

If you've ever tried to lose weight, you know how frustrating that entire

process is. You can exercise as hard as you can for three hours, but if you do

that only once in a week, it will have zero e�ect on you. What truly generates

results is when you go multiple times per week. Then suddenly, a few months

later, you'll start noticing changes in your body.

Consistency matters, and that same concept applies to your professional career

as well. Things take time, and intensity is not always the answer. The habits

you decide to cultivate (or not cultivate) will determine your future life

opportunities. As described in the book Atomic Habits :

"Habits are the compound interest of self-improvement. The same way that

money multiplies through compound interest, the e�ects of your habits

multiply as you repeat them. They seem to make little di�erence on any given

day and yet the impact they deliver over the months and years can be

enormous. It is only when looking back two, five, or perhaps ten years later

that the value of good habits and the cost of bad ones becomes strikingly

apparent." — James Clear

I often get emails from other software engineers asking what programming

language they should learn. And while that's a very important question to ask,

I feel like a more valuable question would be: "What habits do I need to

cultivate in order to be e�ective in any programming language?"

That's why I decided to focus this book on habits instead of tactics.

Now let's dive in! Are you ready?

Habit 1� Look For The Signals

"The oldest, shortest words – yes and no –

are those which require the most thought." ― Pythagoras

Every single day we're bombarded with tweets, newsletters, and videos telling

us what we should do, what we should learn, what we should focus on. We are

constantly faced with FOMO (the fear of missing out). What if we're wasting

our time with the wrong programming language? What if the most productive

framework is not the one that you're currently using?

For me personally, it all started with choosing the right Operating System (OS).

At the time, I had a Windows machine, but everybody was telling me that Apple

computers were better and I should switch. However, their prices were way out

of my league, so getting one was not even a possibility. Fast forward a couple of

years and one of my employers gave me the option to choose between

Windows and MacOS. I went straight for the MacOS to see what the fuss was

about and what was so incredible about it. After some time using MacOS,

Ubuntu started to become very popular and everybody was telling me I should

switch to Ubuntu. So I thought I'd give it a try and started using it. My point

here is not to tell you which one you should choose, the point here is that

there's no such thing as the best tool .

Instead, we should practice JOMO (the joy of missing out), which is mostly

about being happy and content with what you already know. Give yourself

some credit and look back on everything you learned so far. Of course, you

shouldn't be complacent and stop studying new technologies. It would be best

if you find some balance between practicing your existing skills and learning

new ones.

People will try to convince you which is the best OS, the best programming

language, the best framework. They will tell you about all the amazing things

that their tool does and that your tool does not. The reality though is that every

single tool is di�erent and we are also di�erent as users. What is best for you,

may not be the best for me or for others.

Think of it as a radio station that you're trying to tune into. I know you

probably don't use radios anymore, but stay with me. Imagine you turn the dial

and it's just picking up static noise, but after a few frustrating seconds, it

finally manages to pick up a signal and tune into a station. The signal is the

meaningful information that you're actually interested in. The static noise is

just the random, unwanted variation that interferes with the signal. That's

why self-awareness is so important, you need to be able to identify what is the

signal and what is just noise.

It's crucial to understand that the noise will always be there. You don't need to

necessarily abandon social media, unsubscribe from all newsletters, and stop

watching YouTube videos. A digital detox can definitely help for a while;

however, it's not a long term solution. What you need to do is to cherry-pick

what is relevant to you at this point in your career.

Accept the fact that you simply can't learn everything. Remember, desires are

endless; needs are limited . Accept the fact that newer is not always better.

There are people working with ancient programming languages and still

making a lot of money. Practice daily the subtle art of saying 'no'. No to that

newest library. No to that fancier platform. Say more 'noes' so you can say 'yes'

to what really matters to you.

Hear the noise, but only pay attention to the signals.

// TODO

Create a list of all technologies and tools that you would like to learn. Now

label each of them with a di�erent priority: "This Week", "Next Month",

"Next Year". Whenever you feel like you're missing out on some new

shiny trend, revisit this list and reorganize the priority.

Questions & Answers: How do you decide which technology to learn and

invest time in?

Daniel Buchner (Microsoft):

"Earlier in my career, I remember paying close attention to every new

framework that would land on the front page of Hacker News. I would read

up on whatever unique approach they would take, and spend extra cycles

tinkering with the framework or library to get a sense of it. This is perfectly

fine if you have ample free time to explore and learn, but can often lead to

fatigue, because the list of hot new things is never-ending.

These days, I try to focus on a few key things that drive my evaluations:

1. What are the absolute must-have technical requirements for whatever I am

working on? This may include things like performance, desired UX, or

interoperability with target systems.

2. How easy is it going to be for others to work on what I am building, and

what will it look like for them to integrate it in whatever projects they are

working on?

3. Is what I am doing aligned with the trajectory of the open web, standards,

and specifications I believe will stick around over the long term?

The three points above tend to weed out many of the libraries, frameworks,

and other utilities I come across. This has saved me time and allowed me to

focus more on delivering what I need to, instead of getting caught up in

dev-tourism."

Addy Osmani (Google):

"Accept that you can't learn everything, but you can learn enough to be

e�ective. When it looks like an idea, framework or technology is gaining some

traction, I'll invest an afternoon in trying it out myself to get a sense of two

things: 'Does it improve my productivity?' and 'Does it improve the

user-experience of the types of projects I usually build?' If the answer to

either of these is yes, I'll consider spending time learning about the

framework or technology in more depth.

Because our time is finite, there are plenty of technologies that I'll try, will

find compelling enough to keep an eye on, but will make a trade-o� about

learning and investing in favor of something else. I think that this is healthy. I

originally tried (and punted) on React the first year it came out, but now use

it regularly. I like a lot of the ideas in Svelte, but because I had already learned

React, Preact and Vue, decided that it was a better investment of time to level

up in completely di�erent areas with that time, like the Web Animations API.

As I said, with time being finite, it's good to find a balance in what you choose

to learn to keep yourself e�ective. When you pick just a few, high-impact

choices you set yourself up to have enough time to get more depth in your

technology of choice. This can be immensely useful when you're trying to

build anything non-trivial in the real world."

Thanks for taking the time to read this free chapter.

I can't wait for you to read the full book :)

Wanna help? Share it with your friends!

- Zeno

